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The PISO method. which is a non-iterative method for the solution of the time-dependent,
implicitly discretised fluid flow equations by operator-splitting. is extended here to handle
reacting flows. The additional species conservation equations, together with the energy equa-
tion, are incorporated into the predictor—corrector sequence of steps. Both turbulent-mixing
and chemical-kinetics controlled combustion models are catcred to. The method is tested in
one- and two-dimensional cases and a comparison with a comparable iterative scheme is
made. The results show that such reacting flows can be handled by the new scheme with
efficiency, while temporal accuracy is maintained. € 1991 Academic Press. Inc.

INTRODUCTION

In [1], a non-iterative technique, called PISO, for the solution of the implicitly
discretised time-dependent flow equations was described. The method was for-
mulated for both laminar and turbulent inert flows, both compressible and incom-
pressible. The non-iterative solution is accomplished at each time-step through a
sequential predictor—corrector process within which the different dependent
variables are updated individuaily. The term “operator-splitting” is invoked to refer
to the separate operations effected to each of the variable fields, rather than to what
is normally understood to be the time-splitting of terms. The avoidance of iteration
at each time-step reduces the computing effort substantiaily, while the sequential
nature of the solution obviates the need for block solution and its complexity.
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REACTING FLOW PISO

The performance of the PISO method was evaluated in [27, where 1t was applied
to compressible and incompressible flows. A comparison with similar computations
using iteration verified the considerable advantages of PISO in speed.

As was pointed out in [1], the predictor—corrector strategy need not be confined
to the handling of the linear coupling between the equations in pressure and
velocity. Extension of the method was indeed made tc handle the strong coupling
through the source terms in the k — ¢ turbulence model equations. Here, a method,
based on the PISO approach, to compute reacting flows is presented. Because of
the strong coupling arising from large density variations, the scheme must now
cope with non-linear linkages acting through the convective contributions in the
equations. This is in addition to the coupling through the source terms due to the
reaction kinetics.

The basic PISO method, in the form presented in [ 1], has in fact already been
applied to steady-state reacting flows in, for example, 3, 4] However, in these
implementations. the splitting was effected only to the momentum and continuity
equations, while the handling of the conservation equations for species and tsm-
perature (pertaining to the combusion process} was merely appended at the end of
the splitting sequence. No attempt was made to absorb the coupling between thoss
two sets of equations within the splitting procedure.

Although the above applications have demonstrated the utility and reliability of
PISO, they do not take advantage of the strength of the method by incorporating
all strongly coupled equations within the splitting process. More importantly, PISC
was primarily devised to handle unsteady flow cfficiently by avoiding iteration,
which is made possible by this very splitting practice. Clearly, such a capability caa-
not be maintained when extension to reacting flows is made without the incorpora-
tion of the equalions governing combustion within the splitting process. It s this
issue which is dealt with herein.

1t should be emphasized here. that the present method is mainly intended to cater
to the strong coupling between the flow field and the combustion process, rather
than to deal exclusively with the “stiffness” of the combustion equations themseives
which is inherent in the modelling of chemical reactions. Such stiffness can itsell be
handled by operator-splitting, as examination of the literature would reveal (see, for
example, [5, 6]} In the latter context operator splitting is introduced inio the
species equations alone to cope with two disparate time-scales, that of the combus-
tion process and that of transport, regardless of the two-way coupling beiween the
flow and combustion process. Such splitting can indeed be incorporated within the
method presented herein. However, for the purpose of this study, no such measures
{save for the linearisation of one term to be outlined later) were found necessary.
This was partly assisted by the fact that only single-step reactions were considered;
it can also be argued that the implicit treatment of the reaction terms, facilitated by
the present method, must have been another main factor. It should be stressed that
the capability of the method to handle multi-step reactions remains to be verified.

Since the present work is concerned with the method of solution rather than with
the modelling of reaction processes, little will be said about the combustion models
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themselves. The handling of two such models is treated herein; the first is the
conventional Arrhenius type for chemical-kinetics controlled combustion, and the
second is for turbulent-mixing controlled reaction due to [7]. The method will be
explained with reference to a simple example in which two species (fuel and
oxidant) react to give one product. The following sections will first present the
governing equations to be solved, the operator-splitting procedure will then be
detailed, and finally results of the computations will be compared with calculations
performed using a comparable iterative method.

GOVERNING EQUATIONS AND DISCRETISATION

The Transport Equations

The governing ensemble-averaged transport equations in Cartesian tensor
notation for continuity, momentum, energy, and species (fuel) in reacting flow are

242 )0 0
a%(pu,»)+é%j(pu,-uj)= —gﬁ+%(ﬂ 2‘;—) (2)
%(pe)+%(puj6)=—p%+%<i%> 3)
and
% (pmy) + a% (pu;my) = 5(1—] (Gﬁp %%) +8p, (4)

where all dependent variables are taken to be the ensemble-averaged mean when
the flow is turbulent, and y is an effective viscosity, while o and o, are effective
Prandtl numbers. Presently, these diffusion coefficients are assumed to be given. In
turbulent flow, their values might be determined from a turbulence model such as
the £ — ¢ one; otherwise laminar values prevail. When a turbulence model is used,
the associated equations should be handled within the splitting procedure. As this
is outlined in [17], reference to it will be omitted here. The energy, e, is related to
the temperature, 7, and the fuel mass fraction (also referred to as concentration),
my, by

e=C,T+mH, (5)

where C, is the constant volume specific heat, and H_ is the heat of combustion of
the fuel. Term S in Eq. (4) stands for the rate of consumption of fuel.
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The pressure, p, and the density, p are related by the equation of state which may
be written in the form

p=pY(p.T), {6}

where, for a perfect gas, y becomes L/RT.
The main heat-releasing combustion reaction is presumed to be of the globai
single-step trreversible form

1 kg fuel + 5 kg oxidant — (1 + 5} kg products, 171

where s is the stoichiometric combination ratio.
The fuel combustion rate, S, for a chemical-kinetics controlled combustion
process is represented by the Arrhenius type expression

PN
o0

S 102 [ E
= —Ap’mm,expl ———= 1
F pmmm, pk RT
where 4 and E are empirical coefficients, m, is the concentration {mass fraction)}
of oxidant, and R is the universal gas constant. For turbulent-mixing coatrolled
combustion, the expression proposed in [7] is used. It is

. m, Bm )

SF:_AIEmln{mh—_oa‘ ‘I7 ° {9‘:
T 7 s " IT+s

where A’ and B are empirical coefficients, and t is the turbulent-mixing time scale.

The mass fractions of oxidant and product, denoted by m, and m,, respectively,

along with the inert concentration, m;, are obtained through Eq. (7} and the overali

species conservation as

m, m,,,
m, —TZI’H/[ N
{103
m M,
my+ my, +—-
1+ 1+

and
Ymi=L  j=fo0,pi
i

where the subscript I denotes an initial value,

Discretisation

As is the case with the basic PISO method in [ ], the splitting procedure can be
effected to any set of equations discretised by conventional difference schemes. For
the sake of generality, the discretised equations are therefore presented here in the
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operator form employed in [1], which caters to the various spatial discretisation
schemes. For temporal discretisation, the Euler implicit scheme is again selected for
ease of presentation.

The governing equations (1) to (4) may be expressed, respectively, as:

1

5(pn+1__pn)+di(pui)n+l=o (11)
1
57 )" = ()"} — Aoui™ "= Hui 1) — 4, p" ™ (12)
1
B_t {(pe)n+1__(p€)n}__Boen+1=J(en+l)_pn+1Aiu§1+l (13)

1
5 {{pm )yt —(pms)'} —(Co+ So)myt = G(mj+ 1y + "L (14)

In Egs. (11) to (14), similar notation and practices as those introduced in [1] are
followed. Thus, the operators H, J, and G contain the convective and diffusive
contributions and are defined as

H=Y Aju;, (15)
k
J=Y B.e, (16)
and
G=Y Cymg,, (17)

where index &k is a grid node identifier and the summation is over all the nodes
surrounding the central node that are involved in the formulation of the finite-
difference representation of spatial fluxes. The quantities 4, B, and C are finite-
difference coefficients; subscript 0 denotes the central coefficient. These central
elements are taken to the left-hand side of the equations to enable their implicit
treatment in the manner introduced in [1].

The terms S and S, in the equation for species contain the rate of consumption
of fuel, the expressions for which depend on the combustion model. Thus, for the
turbulent-mixing controlled rate proposed in [7],

m, Bm,
me, —,
R

S=—A’£min{ (18a)
T

and

S,=0 (19a)
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and. for an Arrhenius reaction rate,

S=—Ap*smm —m)exp(—-—ji\ {189}
T . RT ’
and
5 o EN e
So= ~Ap‘s(2m,-—m)expl(ﬂ:§—?;/}, {195}
where

Mo ;
m=mg, ——.
: s

In arriving at expressions (18b) and (19b), the reaction rate term, S, has been
linearised in m, using Taylor series expansion. This enhances the stability of the
proecedure as it strengthens the diagonal dominance in the set of discretised equa-
tions. This was the only measure found necessary to stabilise the calculations
presented herein. This, it may be argued, is due to the simple single-step reacticn
considered here. Other linearisations {(or operator-splittings in the sense used by
[67) of the source terms in cases of multi-step reactions may be necessary, in which
case the resulting expressions could still be incorporated in the overall PISG
splitting.

As in the case in [1], the pressure is computed from its own equation which is
derived {rom a combination of the continuity equation (11} and the momentum
equations {(12). The derivation of such an equation will be dealt with when the
solution algorithm is presented.

The above equations are general and do not relate to a particular spatial dis-
cretisation scheme. It is these equations which will be used in the presentation of
the splitting algorithm. For the purpose of the example calculations presented later,
however, one such scheme had to be selected. This is the same as that described in
271, and hence requires no further elucidation here. It suffices to say that the
scheme employs a staggered grid, is of the finite-volume type, and is based on a
hybrid of upwind/central difference formulae.

SPLITTING PROCEDURE

In {17, the operator-splitting methodology was introduced to the equations of
inert flow, in which the variations in density are solely due to compressibility.
Attention was focused there on the linear pressure—velocity coupling and, although
it was pointed out that non-linear coupling through coefficients can be handied by
the same splitting procedure, this was ignored because it was deemed unnecessary
for the applications in hand.
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In reacting flows, very large density gradients arise, leading to strong non-linear
coupling of the equations; this can no longer be ignored in the formulation of the
solution algorithm. As will be seen shortly, the incorporation of the species and
energy equations demand significant restructuring of the predictor and corrector
steps in the algorithm. This restructuring embodies the main departures from the
original splitting. These are:

(i) The energy as well as the species equations are now solved in implicit
form together with momentum in the same predictor step. This is to account for the
rapid variations in temperature and concentration over the time-step brought about
by combustion and which have profound influence on subsequent corrector steps.

(it} The coefficients in the corrector steps are now updated to reflect the
large variations in density. The updating is carried out only after the continuity-
based pressure equation is solved. This ensures that conservation is maintained,
which is crucial especially in the calculation for species.

(iii) Energy and species corrector steps now follow each momentum correc-
tor. This leads to an increase in the accuracy of the overall scheme (this can be
shown following the analysis in [ 1]; hence it is not presented here).

Another change that is made is the solution for pressure itself rather than for
pressure increments as in [1]. This is merely an organisational matter which does
not affect the outcome of the calculations. The details of the splitting are presented
in what foliows.

Let superscripts *, **, and *** denote intermediate field values obtained during
the splitting procedure. The steps in this procedure are as follows:

(a) Predictor step. The velocity, density, viscosity, and pressure field prevailing
at time " are used to calculate the coefficients 4, B, and C in Eq. (15) to (17). The
governing equations are solved in the following sequence:

(i) Energy. Based on Eq. (13), this is:

/pll pl‘l
(E—Bo e*=]“(e*)+§e”—p”A,-u;’. (20)
(ii) Species. From Eq. (14), this is:
s Cs— S, *—G"(m*)—i—gjn”-i-S" (21)
5 COT RO TN g T
(iii) Momentum. Equation (12) is taken as:
pn n n p" n n 3
<5;—A0)u,-*=H(u,-*)+au,.—d,-p. (22)

Equations (20), (21), and (22) can be solved by one of the standard techniques to
yield the e*, m*, and u} fields, the last of which, it should be noted, will not in
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general satisfy the continuity equation (11). The temperature, T*, is now calculated
from Eq. (5). Note that the order of solution of these equations is of no conse-
quence, as ali coefficients are based on old time level values.

{b) First corrector step. (i) Momentum corrector. A new velocity field, u7*,
together with corresponding pressure and density fields, p* and p*, are sought 1o
satisfy the continuity equation:

1 ] _
5 (0% =)+ Alprur =0, 22)

Thz momentum equation (12) is now written in an explicit corrector form as

4

/1 A"
(————0> p¥uX* = H"(u,»*)—kp uh— A, p*, {24}

or p” ) ot
where all the coefficients 4 are still evaluated at the old time level (note that the
velocities u¥ and the density p” do not satisfy continuity). Equations {23) and {24)
are now used to derive the pressure equation in the fashion presented in [17. Taus,
taking the divergence of Eq. (24) and substituting into Eqg. (23) gives

(/1 An —1 b} l//*
245 445

where, in arriving at Eq. (25), p* has been replaced by:
p¥ = p¥yr*. 126;

Equation (25) can be solved for p*; the new densities and velocities, p* and uX*,
are now computed from Eqs. (26) and (24), respectively. These new fields, it should
be recalled, satisfy the continuity equation (23).

{ii) Energy corrector. The u** and p* which now satisfy continuity are used
to update the B coefficient in equation (17). The energy corrector equation is thus
taken as

% n
<—p——B§,“>e**=J*(e*)+%e"~p*A,»u,** i

[ R
-3

ot !

which yields the e** field.

(111} Species corrector. Here, also, u** and p* are used to update the C
coefficient in Eq. (16). The species corrector equation is

i~
fes]

ES n

4 2 ;
e CE-SE\mF*=G*mF)+—m+ S* {28}
<0t 0 0) ! (my?) 5t
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which yields the m}* field. The temperature is then updated from Eq. (5) as

e**F —mE*H,

T** = el , (29)
whence
1
A (30)

(c) Second corrector step. (i) Momentum corrector. For this step, the momen-
tum equation is

! Aak *k,, %k k (%% P n * %
5t p* prruF* = H*(u; )+E”f“4’i1’ ’ (31

where it should be noted that all 4 coefficients in Eq. (15) and (31) are based on
p* and u¥*. By combining Eq. (31) with the continuity relation

1 .
5, (P =)+ Ailp™Hui**) =0, (32)
the following pressure equation is obtained:
1 AR\ Pr*
A ===2) 40— *x
[ '{(m p*) } Z }”

1 A(>)k —1 . s pnur? pn
=4, ———= : — == 33
[G58) {5 -5 ()

In arriving at the last equation, the followinig equation of state has been invoked:

p**=p**¢**- (34)

Solution of Eq. (33) vields p** which is used to obtain p**, via Eq. (34), and
velocity u*** from Eq. (31).

(ii) Energy corrector. The coefficients B in the energy equation are updated
using the most recent values of density and velocity to give the second energy
corrector equation,

p** pll

(_5;__56”) €***=J**(€**)+g;€"——p** AuF**, (35)

which yields e***.
(iii) Species corrector. Similarly, the second-corrector species equation is

p** P
<E——C(§"*—S;,"*) m;***=G**(m_;**)+5m;+s**, (36)
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which gives the m** field. The temperature is then obtained from

PR EL L)

C,

The density p**, velocity u¥**, fuel concentration m}**, and temperature 7 >**
are taken to represent the field values at the next time level, n+ 1; this completes
the sequence in the solution of the equations over the time-step. It should be noted
that, for non-reacting flows, the method reduces to the original PISO with coef-
ficients being updated at each corrector step.

RESULTS

Preamble

The present methodology is applied to both one- and two-dimensional unsteady
flamne propagation in confined chambers. The purpose of the calculation is tc:

(i) demonstrate that the method is capable of handling two different, singie-
step reaction models, including that of the Arrhenius type;

(ii) show, at least for the present choice of discretisation scheme, that the
temporal errors introduced by the splitting procedure vanish with 6z and do so at
least as fast as the temporal discretisation error;

(i1} evaluate the saving in computing effort achieved by avoidance of
iteration; and

{iv) demonstrate the ability of the method to handle large time steps when
high temporal accuracy is not demanded.

To accomplish objectives (ii) and (iii) above, comparisons are made against com-
putations with an existing iterative method employing the same spatial and tem-
poral difference schemes. Such a method yields (by virtue of iteration) the exact
solution (to within the iteration tolerance imposed of around 102 on residuals) io
the discretised equations over each time-step. Hence, the errors in the fields thas
calculated will be solely due to the spatial and temporal discretisation schemes. By
refinement of d¢, the value at which the chosen temporal difference scheme gives a
time-accurate solution can therefore be found. Comparison with such solution at

%
tatter, the species and energy equations are solved after momentum and pressure
within each iteration. The reason for the choice is that the method is one of the
most widely used and established. Improvements on SIMPLE have been developed
in the form of the SIMPLER [9] and SIMPLEC [101 methods. These are
reported to be more stable than SIMPLE and can be significantly faster when the

581 93 2-10
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¢

1{also iterative)
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FiG. 1. Reactedness distribution for turbulent-mixing controlled reaction.

relaxation factors are optimised. The comparisons presented herein, therefore, have
to be viewed with these improvements in mind. Nevertheless, the reported increase
in speed with these methods is still not sufficient to offset the cost of iterating at
each time-step, a process which the non-iterative PISO dispenses with.

One-Dimensional Compressible Reacting Flow

The one-dimensional compressible case chosen is that of a reacting flow with
constant effective viscosity (values typical of a turbulent flow) in a long adiabatic
duct with closed ends. The effects of wall shear are accounted for approximately.
A uniform mesh of 200 cells was mainly used. In the absence of an ignition model,
burning is triggered by artificially depleting the fuel in a small region (encom-
passing one computational cell) adjacent to one end of the duct, at a rate which
consumes 1% of the total charge over a period of 7, where 7 is the mixing time
scale, to be defined shortly; thereafter, combustion is allowed to proceed at its own
rate.

Calculations were first performed for turbulent-mixing controlled combustion
using the model in [7], with constants: 4 =4.0 and B=0.5. The turbulent mixing
time scale, v (0.01s), and the viscosity levels are taken from other combustion
simulations. The iterative scheme is used to find the maximum allowable value of
the computational time-step (say, df,), for which the temporal truncation error is
acceptably small.! Under-relaxation was necessary to stabilise the computations,
values of 0.5 being used for the velocity, 0.7 for the energy and fuel concentration,
and 1.0 for the pressure. Similar calculations were then performed using the present
methodology using time-steps that are multiples of 6ry. Figures 1, 2, and 3 show the

! Only the final time-accurate solutions resulting from these exercises are presented for clarity.
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FiG. 2. Temperature distribution for turbulent-mixing controlied reaction.

predictions along the duct at time f=3r. Figure { shows the distribution of the
reactedness, defined as

i

¢ _ n'lf"—n'li
P b’
ﬂlf n’lf

where the superscripts # and b stand for unburnt and fully burnt values, respec-
tively. Figure 2 shows the distribution of the normalised temperature, defined as

Tr—T1*
¢T = Tb T
bt/ 61,
] —_— 16
8
3.0 4
8o
Ytiame <
20

1 lalso iterative ;

Fig. 3. Velocity distribution for turbulent-mixing controlled reaction.
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and Fig. 3 displays the corresponding gas velocity normalised by the empirically
determined turbulent flame speed ( EZV//C—H ABk,/o,, where C, and o, are tur-
bulence related constants, and k, is the initial turbulent kinetic energy). The reason
for temperature rise behind the flame front in Fig. 2 is due to the pressure work
term (p(du;/cx;)) that appears in the energy equation (3); this is significant due to
the steep velocity gradient and the low value of density behind the flame. The dif-
ferent curves in each case are those obtained with the present method for different
values of d1/dt,, as well as that for the time-accurate solution obtained with the
iterative method. The latter curve is indistinguishable from that pertaining to
o1/dty =1, verifying that the temporal splitting errors vanish before the errors intro-
duced by the temporal difference scheme used.

Next, calculations were performed for a chemical-kinetics controlled reaction
(Arrhenius) to test the performance of the present method for this difficult situation
(where the reaction reate increases exponentially with temperature). The reaction
rate constants are those for a pure hydrocarbon reaction and are taken as
A=15x10%m>%kg/s and E=1.0x 10® J/kg mole. For this situation, the iterative
scheme proved troublesome to converge and attempts to obtain a solution were
abandoned because of the excessive computing time requirement. Figure 4 displays
the results from PISO, where the effect of the computational time-step (normalised
by the same value of 7 as in the previous case, in the absence of a suitable time
scale) on the calculated reactedness (¢,) at ¢ =3t1. The temporal truncation error
becomes acceptably small at about ér=10.0037. However, it could not be ascer-
tained whether this is dictated by the temporal errors in the splitting or in dis-
cretisation, since no solutions could be obtained with the iterative method. Judging
by the performance of PISO in the previous as well as the following cases, it is con-

4o
45
0.8f 5t/T
——  0.05
—— 0.0
0.6}
-~ 0.0125
— . 0.00625
04k ——  0.00313
0.2k
o " . . . . o ,
01 04 05 06 07 08 09 1.0

x/L

F1G. 4. Fuel concentration profiles at ¢ = 3t for chemical-kinetics controlled combustion.
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Fi6. 3. Fuel concentration profiles at different times for chemical-kinetics contrelled combustior.
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FiG. 7. Field variables in turbulence-controlled reaction in two-dimensional chamber at ¢ =0.03 s:
(i) velocity vectors; (ii) fuel concentration; (iii) temperature.



REACTING FLOW PISO 443

) N

NORMALISED ‘
TEMPERATURE

-30000
.70000
.50000
.30000
.10000

a x 4+ % a
[an R e B & B o i e}

Fig. 7—Continued

jectured here that it is the temporal difference scheme, which is only first order
accurate, that dictates such small dr. It should, of course, be remembered that the
equations in this case are very “stiff” and very steep variations prevail, putling great
demands on the scheme. The fuel concentration profiles, with the finest 5z, at
different time levels are shown in Fig. 5. Here a fine mesh of 400 cells is used to
capture the sharpness of the flame front.

Two-Dimensional Reacting Flow

Here again two cases are presented; one with turbulent-mixing controlied reac-
ton and the other with Arrhenius type of reaction. In the first case. a reacting flow
with a constant effective viscosity (at a value typical of turbulent flow) is studied
in a closed square chamber of 50 x 50 cm. The usual no-siip boundary conditions
are imposed at the sides of the two-dimensional adiabatic chamber and a uniform
grid of 40 x 40 celly was used. Agwas done in the vrevious case burnine wae started

O

8% O DC g

DICTCG ab a Talc Wileh CONsuned qg 7o 4 C TOtA] CHALEE 10 the et Ovel
a period of t; after that, combustion is allowed to proceed at its own rate. For this
case, calculations were performed for turbulent-mixing controlled combustion with
the same values for coefficients 4 and B, mixing time scale. t. and viscosity as those
used in the one-dimensional case.

As in the one-dimensional case, computations were first performed with the
tterative scheme using various values of d¢ to find the value ¢, for which the tem-
poral errors become negligible. The exercise was then repeated with the present
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Fic. 8. Field variables in turbulence-controlled reaction in two-dimensional chamber at 1 =0.045s:
(1) velocity vectors; (ii) fuel concentration; (iii) temperature.
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method using time-steps which are multiples of §7,. The results of these computa-
tions are displayed in Fig. 6 which shows the predicted reactedness at = 31 along
one of the sides adjacent to the corner where ignition was initiated. Once again, it
18 clear that a time-step independent solution is obtained with PISO at the same
step size as the iterative scheme, i.., at 61/dt,= 1. The distributions of velocity, fuel
concentration, and temperature (both normalised as before) at two time levels are
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FiG. 9. Ratio of computing time of iterative/present method.



406 ISSA ET AL.

() == =g.24 M/S

TIME =3.000 MS

AR N N 8 A

R
NIRRT ————— N N N L s

A S L R
B )
e
B T R

O m—

TIME =3.000 MS

NORMALISED FUEL
CONCENTRATION

= 0.90000
-0.70000
+0.50000
~0.30000
-0.l10000

Fic. 10. Field variables in chemical-kinetics controlled reaction in two-dimensional chamber at
r=3 ms: (i) velocity vectors; (ii) fuel concentration; (iii) temperature.
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illustrated in Figs. 7 to 8; the computation was performed with the finest time-step
size. The results appear to be plausible.

In Fig. 9, the ratio of computing effort required by the iterative method to that
bv PISO is plotted as a function of the time-step size. It is evident that PISG is not
only able to cope with large Jr, but it is much faster, especially when a time-
accurate solution (81/6¢y=1) is required.

In the second case, the same 40 x 40 mesh was employed in a square chamber of
5x5cm, the reduction in size from the previous case being necessitated by the
desire to capture the thin flame by as many cells as possible without mesh refine-
ment. Otherwise, the flame would have been far too thin to be captured by the
mesh, and the calculations would have been somewhat meaningless. Other
parameters are retained at their values presented for the previous cases. However,
in order to investigate the flame propagation in the absence of wail effects, fuli slip
was assumed at the walls; this should give a cylindrical flame front. Figs. 10 and 11
which display the velocity vector field and the normalised fuel concentration and
temperature contours at two time levels, indeed show that the flame front is cylin-
drical. They also exhibit that a fairly thin flame fron¢ is predicted as is expectaed
from a chemical-kinetics controlled reaction.

CONCLUSIONS

The PISO method of [1] is extended and suitably modified to handle the strong
coupling arising in the equations governing reacting flows. This entails not only the
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FiG. 11. Field variables in chemical-kinetics controlled reaction at r=4.5 ms: (i) velocity vectors;
(ii) fuel concetration; (iii) temperature.
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handiing of additional source terms, but also the accounting for the rapid variatons
in convective coefficients due to steep density changes. Reorganisation of the
splitting sequence has been necessary to achieve all this.

The new scheme was applied to two problems of unsteady reacting flows, in one-
and two-dimensional closed chambers. The results demonstrate that the spiitting
process undermines neither temporal accuracy nor stability. Comparison with an
existing iterative scheme reveals that reacting flow PISO is several times faster than
its iterative counterpart, and that the scheme is equally capable of handling
turbulent-mixing and chemical-kinetics controlled combustion.
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